Organizational Features and Capacity Building Across Heterogeneous Outdoor Science Programs

Presented by The Research Group

lawrencehallofscience.org
Agenda

- Research Goals and Study Overview
- Research Findings
- Implications of Findings
- Questions we’re considering
- Closing
Research Goals

- This presentation is part of a five-year study that aimed to the field of outdoor science education with evidence of the quality, value, and impact of Outdoor Science Programs (OSPs)

- **Study 1: Implementation Study (2016-2019)**
 1. understand the instructional practices and learning opportunities in Outdoor Science Programs (OSPs)
 2. understand how BEETLES supports high-quality pedagogy and other practices across programs

- **Study 2: Efficacy Study (2019-2021)**
 1. Explore how OSPs promote positive dispositions toward science and the environment

This project is supported by the National Science Foundation under Grant No. 1612512. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Goal: Build the capacity of outdoor science programs (OSPs) to facilitate learner-centered and nature-centered science learning experiences for youth using research-based pedagogical strategies.
Research Questions & Data Sources

1) Which components of the capacity-building model were implemented across diverse outdoor science programs?

2) What were the perceived impacts of these materials on pedagogical practices?

3) To what extent did implementation vary based on organizational features?

- Post-Leadership Institute Surveys
- Leadership Institute Implementation Plans
- End of Year Program Leader Surveys
Sample

Cohort 1: August 2017

Cohort 2: December 2017

Cohort 3: August 2018

68 Programs participated

51 Programs completed the surveys used for the present analyses
Sample - Type of Program

44%
Primarily residential programs

56%
Primarily non-residential programs
Sample – Learning Goals

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Literacy</td>
<td>82%</td>
</tr>
<tr>
<td>Science</td>
<td>68%</td>
</tr>
<tr>
<td>Socioemotional</td>
<td>29%</td>
</tr>
<tr>
<td>School Academics</td>
<td>16%</td>
</tr>
</tbody>
</table>
Findings Overview

- Capacity Building Goals
- Components of BEETLES Implemented by Outdoor Science Programs
- Perceived Impact of BEETLES on Outdoor Science Programs
- Challenges In Uptake of BEETLES

Overall, and by program features (res/non-res and learning goals)
Why these features?

- Programs vary widely in how much time they have with students, but asking program leaders to report contact hours is very challenging.
- Residential programs, overall, have higher contact hours, and Non-residential programs, overall, have lower contact hours.

Res/Non-res as a proxy for contact hours

Science Learning Goals as an indicator of science prioritization and focus

- All programs were based outdoors and focused on nature, but differed in their goals.
- Stated science learning goals indicate whether program leadership prioritizes and explicitly directs resources toward science learning.

We hypothesized that these two key variables would influence how program leaders make decisions in capacity building efforts and prioritization.
Findings:

Capacity building goals
Program Leader Identified Goals

- 52 organizations identified goals in implementation plans
- Goals shared per program: 1-37 (mean 5.24, median 3, SD=6.17)
- Codes used to characterize goals were informed by:
 - BEETLES design principles and goals (e.g. theoretical background for students’ learning or instructors’ professional development)
 - And themes we identified in the data themselves
Program Leader Identified Goals: Student Learning Experiences

- Instructor's professional learning: 83% (n = 43)
- Instructional resources or student experiences: 77% (n = 40)
Program Leader Identified Goals: Theory into Practice

- **Instructors’ professional learning**: 54% \((n = 28)\)
- **Student experiences**: 67% \((n = 35)\)
Program Leader Identified Goals: Organizational Changes

- Organizational changes: 40% (n = 21)
- Equity and inclusion: 35% (n = 18)
Capacity Building Goals - Variation by residential/ non-residential

<table>
<thead>
<tr>
<th>Capacity Building Goals</th>
<th>Total number of programs with 1+ goal(s)</th>
<th>% of Residential programs with 1+ goal(s)</th>
<th>% of Non-Residential programs with 1+ goal(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Learning Experiences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructors’ Professional Learning</td>
<td>43</td>
<td>91%</td>
<td>79%</td>
</tr>
<tr>
<td>Instructional Resources/Student</td>
<td>40</td>
<td>86%</td>
<td>71%</td>
</tr>
<tr>
<td>Experiences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory to Practice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Learning</td>
<td>28</td>
<td>50%</td>
<td>54%</td>
</tr>
<tr>
<td>Student Experiences</td>
<td>35</td>
<td>86%</td>
<td>57%</td>
</tr>
<tr>
<td>Organizational Changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational Changes</td>
<td>21</td>
<td>32%</td>
<td>50%</td>
</tr>
<tr>
<td>Equity and Inclusion</td>
<td>18</td>
<td>50%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Capacity Building Goals - Variation by science goals

<table>
<thead>
<tr>
<th>Category</th>
<th>Activity</th>
<th>Total</th>
<th>Science Goal</th>
<th>No Science Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Learning Experiences</td>
<td>Instructors’ Professional Learning</td>
<td>43</td>
<td>82%</td>
<td>79%</td>
</tr>
<tr>
<td></td>
<td>Instructional Resources/Student Experiences</td>
<td>40</td>
<td>82%</td>
<td>71%</td>
</tr>
<tr>
<td>Theory to Practice</td>
<td>Theory to Practice: Professional Learning</td>
<td>28</td>
<td>50%</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>Theory to Practice: Student Experiences</td>
<td>35</td>
<td>75%</td>
<td>64%</td>
</tr>
<tr>
<td>Organizational Changes</td>
<td>Organizational Changes</td>
<td>21</td>
<td>46%</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>Equity and Inclusion</td>
<td>18</td>
<td>32%</td>
<td>43%</td>
</tr>
</tbody>
</table>
Takeaways: Capacity Building Goals

- Overall program leaders exited the leadership institutes with a range of capacity building goals at their sites.

- Residential programs seemed to place more emphasis on improving student learning experiences and equity & inclusion, while non-residential programs placed more emphasis on organizational changes.

- Programs with science goals were more focused on student learning experiences, and programs without science learning goals were more likely to want to work on equity and inclusion.
Findings:

Components of BEETLES implemented by OSPs and perceived impact
BEETLES Materials & Resources at a Glance

Resources for Program Leaders
- Professional Learning Sessions
- Implementation Support Materials

Resources for Educators
- Student Activities
- Instructional Implementation/Support Materials

www.beetlesproject.org/resources
BEETLES Professional Learning

86%
(n = 44)

at least ONE Professional Learning Session

75% Making Observations
65% Questioning Strategies
43% Teaching and Learning
35% Promoting Discussion
28% Field Journaling
26% Evidence and Explanations
24% Nature and Practices of Science
12% Constructing Understanding
BEETLES Professional Learning - Variation

Residential/Non-residential
 • Implemented equal numbers of PL sessions (mean = 3.15 and 3.26, respectively)

Science goals/no science goals
 • Programs with science goals implemented slightly more PL sessions (3.5) than programs without science goals (2.5) (not statistically significant)

Programs differed in which PL sessions they implemented based on these features
BEETLES Professional Learning – Variation by residential/non-residential

- Whether res/non-res, most programs implemented Making Observations (75% & 78%, respectively)
- Some other PL sessions showed more variability by res/non-res

<table>
<thead>
<tr>
<th></th>
<th>Res (n=20)</th>
<th>Non-res (n=27)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questioning Strategies</td>
<td>55%</td>
<td>74%</td>
<td>19%</td>
</tr>
<tr>
<td>Promoting Discussion</td>
<td>45%</td>
<td>33%</td>
<td>12%</td>
</tr>
<tr>
<td>Nature & Practices of Science</td>
<td>20%</td>
<td>30%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Programs showed variability in PL session usage depending on whether they held explicit learning goals related to science.

<table>
<thead>
<tr>
<th></th>
<th>Science Goal (n=26)</th>
<th>No science goal (n=12)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching & Learning</td>
<td>50%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Nature & Practices of Science</td>
<td>35%</td>
<td>16%</td>
<td>19%</td>
</tr>
<tr>
<td>Evidence & Explanations</td>
<td>31%</td>
<td>17%</td>
<td>14%</td>
</tr>
</tbody>
</table>
BEETLES Student Activities

100% (n = 51)

at least ONE of the 29 Student Activities

Most Used

100% Exploration Routines

98% Discussion Routines

55% Focused Explorations
Student Activities - Variation

Res/Non-res

• Res implemented slightly more SA than non-res (means = 6.6 and 5.5, respectively; ns)

Science goals/no science goals

• Programs with science goals implemented slightly more SA than those without science goals (means = 6.7 and 6.2, respectively; ns)

Programs differed in which student activities they implemented based on these features
Student Activities – Variation by res/non-res

- Regardless of res/non, nearly all used INIWIRMO (100% & 96%, respectively) and Thought Swap (*formerly* Walk & Talk; 95% & 93%, respectively)

<table>
<thead>
<tr>
<th></th>
<th>Res (n=20)</th>
<th>Non-res (n=27)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichen Exploration</td>
<td>40%</td>
<td>22%</td>
<td>18%</td>
</tr>
<tr>
<td>Discussion Routines</td>
<td>75%</td>
<td>59%</td>
<td>16%</td>
</tr>
<tr>
<td>Exploratory Investigation</td>
<td>30%</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Student Activities – Variation by science goals

- Programs were equally likely to use I Notice, I wonder, It reminds me of, Thought Swap, and Lichen Exploration

<table>
<thead>
<tr>
<th></th>
<th>Science (n=26)</th>
<th>No science (n=12)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Scene Investigators</td>
<td>31%</td>
<td>0%</td>
<td>31%</td>
</tr>
<tr>
<td>Case of the Disappearing Log</td>
<td>35%</td>
<td>8%</td>
<td>27%</td>
</tr>
</tbody>
</table>
Takeaways: Use of BEETLES materials and resources

- Overall patterns show high usage of materials related to making observations and using questioning strategies to support student discussion.

- Res programs seemed to place more emphasis on longer learning activities and progressions, while non-res programs seemed to prioritize maximizing impact in shorter time.

- Programs with science goals tailored their choices toward discussions within the context of the nature and practices of science, while programs without science goals focused more on nature-based exploration and peer discussion.
Findings:

Impact on pedagogical practice
Impact on Pedagogical Practice

- **Student Centered Discussions**
 - e.g., Ask learners to add on to others’ thinking

- **Nature and Practices of Science**
 - e.g., Ask learners to make and record detailed observations

- **Culturally Relevant Teaching**
 - e.g., Encourage learners to make connections with prior experiences from family or community

20 items on 3-point scale: Needs Improvement, Okay but room for growth, and Area of Strength
Impact on Pedagogical Practice

Student Centered Discussions
Nature and Practices of Science
Culturally Relevant Teaching

Post-Institute
1.87 (0.32)

End of Year
2.35 (0.27)

Mean difference 0.48

20 items on 3-point scale: Needs Improvement, Okay but room for growth, and Area of Strength
Impact on Pedagogical Practice - Variation

Overall, there were comparable improvements in pedagogical practices over the course of the year regardless of program features (all significant)

<table>
<thead>
<tr>
<th></th>
<th>Post-Institute</th>
<th>End of Year</th>
<th>Change</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1.88 (0.25)</td>
<td>2.32 (0.29)</td>
<td>0.44</td>
<td>1.53</td>
</tr>
<tr>
<td>Non-residential</td>
<td>1.83 (0.39)</td>
<td>2.35 (0.27)</td>
<td>0.51</td>
<td>1.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Post-Institute</th>
<th>End of Year</th>
<th>Change</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Goals</td>
<td>1.86 (0.35)</td>
<td>2.34 (0.27)</td>
<td>0.48</td>
<td>1.09</td>
</tr>
<tr>
<td>No Science Goals</td>
<td>1.84 (0.30)</td>
<td>2.32 (0.29)</td>
<td>0.48</td>
<td>1.53</td>
</tr>
</tbody>
</table>
Takeaways: Impact on Pedagogical Practice

- Overall patterns show positive changes in pedagogical practices related to student-centered discussions, nature and practices of science, and culturally relevant teaching.

- Improvements were similar across programs, regardless of program features.
Findings:
Implementation Challenges
Challenges in Capacity Building

- Limited Time: 59% (n = 30)
- Curricular & Programmatic Design: 18% (n = 9)
- Conflicting Goals and Priorities: 14% (n = 7)
- Staffing Issues: 14% (n = 7)

- (working within existing = 12%, Redesigning = 6%)

- (turnover, limited staff)
Challenges in Capacity Building - Variation

- There were no notable differences in challenges based on res/non-res

- Programs without an explicit science goal were more likely to report challenges with staff resistance
 - 42% of progs without science goals vs. 4% of programs with

- Programs with explicit science goals were more likely to report challenges with competing priorities (e.g., state standards)
 - 19% of programs with science goals vs. 0% of progs without

- Both of the above point to the critical role of stakeholder buy-in
Unpacking Time

- Time is often one of the most prominent challenges in professional learning and institutional change
- Limited Structures to Support Continuous Professional Learning
 - Staffing Structures (Seasonal, Full-time, Part-time)
 - Professional Learning Systems
- Limited Financial Resources
- Meaningful shifts in practice is a journey
 - Not just a "plug and play"
Implications

- The success of capacity building efforts requires careful consideration of variability of organizational features within your sample.
 - Each organization is operating within a unique context and holds unique priorities.
 - BEETLES presented a range of materials from which organizations could choose.
 - There was evidence that using BEETLES supported OSPs in shifting practice across heterogeneous contexts, but that larger structural changes were minimal.

- Findings suggest that building capacity to shift practices requires an investment in organizational time and resources.
Questions We Are Considering

- What other key organizational features may influence implementation of capacity building efforts in meaningful ways?

- How can future capacity building efforts better position organizations for broader institutional changes?

- To what extent do capacity building efforts translate into improvements in student learning outcomes?
Thank you!

Aujanee Young
aujaneeyoung@berkeley.edu
Melissa Collins
macollins@berkeley.edu
Valeria Romero
valeriafr@berkeley.edu

This project is supported by the National Science Foundation under Grant No. 1612512. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.